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Abstract

The distortion framework in social choice theory allows quantifying the efficiency of (ran-
domized) selection of an alternative based on the preferences of a set of agents. We make two
fundamental contributions to this framework.

First, we develop a linear-programming-based algorithm for computing the optimal random-
ized decision on a given instance, which is simpler and faster than the state-of-the-art solutions.
For practitioners who may prefer to deploy a classical decision-making rule over the aforemen-
tioned optimal rule, we develop an algorithm based on non-convex quadratic programming for
computing the exact distortion of any (and the best) randomized positional scoring rule. For a
small number of alternatives, we find that the exact distortion bounds are significantly better
than the asymptotic bounds established in prior literature and lead to different recommendations
on which rules to use.

These results rely on a novel characterization of the instances yielding the worst distortion,
which may be of independent interest.

1 Introduction

The area of computational social choice aims to find good ways of aggregating the preferences of
a set of people, or voters, into a desirable collective decision. The notion of distortion in social
choice was introduced by Procaccia and Rosenschein [27] in 2006 to measure the inefficiency of
voting rules that only have access to limited information about the preferences of the agents. Over
the past two decades, this literature has given rise to a plethora of interesting results about the
distortion of rules in several different domains of interest, including single-winner and committee
voting [2, 6, 11, 12, 13, 14, 24, 25], participatory budgeting [10, 21], and matching [3, 4, 5, 15, 19].

One of the most fundamental settings that have been studied under this framework is that
of implicit utilitarian voting, in which the preferences of the agents are expressed by normalised
but otherwise unrestricted cardinal values, and the voting rules only have access to the ordinal
preference rankings induced by those values. For this setting, some of the very first works in the
area already identified the limitations of voting rules, even those that employ randomization in
their decisions, by providing a general lower bound of Ω(

√
m) on the best achievable distortion

[13], where m is the number of alternatives. Far more recently, Ebadian et al. [16] designed a
voting rule that always achieves a distortion of O(

√
m), thus settling the asymptotic efficiency of
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general voting rules. Even more recently, Ebadian et al. [17] studied the distortion of a class of
very natural randomized voting rules, called randomized positional scoring rules (RPSRs), which
select an outcome proportionally to its score, according to some predefined scoring vector. Rules in
this class display several attractive properties (such as anonymity, neutrality, and strategyproofness
[9, 20]) and in [17] are deemed explainable, as they use randomization in a rather straightforward
manner. The best achievable asymptotic distortion by RPSRs has been shown to be Θ(

√
m logm)

[11, 13], and the asymptotic distortion bounds for several interesting RPSRs are known [17].
From the preceding paragraphs, it is evident that the worst-case, asymptotic distortion of voting

rules for implicit utilitarian voting is pretty well understood. Still, many of the preference vectors
that we encounter in applications exhibit a certain structure, which does not necessarily allow for
the pathological examples that establish the worst-case lower bounds to arise. This motivates the
following first question:

1. Given a vector of agents’ preferences, how can we compute the best possible distortion on this
vector? How can we find a voting rule that achieves it?

Additionally, even in a worst-case regime, in many cases we should not be satisfied with merely
asymptotic bounds, as the hidden constants, even when small, can have a significant impact on
the calculated distortion bounds. This latter fact is particularly pronounced in instances with a
small number of possible outcomes, which are often encountered in practice. Indeed, elections
for political leaders often exhibit a small number of alternatives, or selecting a candidate for an
academic position usually boils down to a choice between a few shortlisted options. Especially for
those cases, we would like to be able to compute the exact distortion bound of a given voting rule,
captured in the following question:

2. Given a voting rule, how can we find its exact worst-case distortion?

1.1 Our Contributions

In this paper, we provide algorithms that answer Questions 1 and 2 above, which are based on
continuous optimization techniques. In particular, we provide the following contributions for the
distortion of voting rules in the unit-sum normalized utilitarian setting.

For Question 1

We design a polynomial-time algorithm which, for any vector of agents’ (ordinal) preferences, i.e.,
for any preference profile with n agents and m alternatives, constructs a linear program with O(nm)
variables and O(nm) constraints which computes the best possible distortion, and the voting rule
that achieves this distortion. Our algorithm is conceptually and computationally simpler than the
best known solution due to [13], which also employs a linear program with O(nm2) variables and
constraints. For the first part of Question 1 in isolation, i.e., merely identifying the best possible
distortion of any voting rule given a preference profile (but not the rule itself), we provide a much
faster algorithm, which runs in time O(nm log(nm)). We complement our theoretical results with
experiments which demonstrate the far superior running time of our algorithms on both real and
synthetic data.
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For Question 2

We formulate the problem of finding the exact distortion of a given RPSR as a quadratic program.
This quadratic program is non-convex, and thus our algorithm does not run in polynomial time.
Still, it is fast enough to comfortably compute the exact distortion of a given RPSR for up to 5
candidates, which captures a plethora of social choice scenarios of interest. Our algorithm is the
first to solve the exact distortion computation problem, but in the next section, we do highlight
its computational advantages against previous techniques that could conceivably be applied to our
domain. Using this quadratic program, we compute the exact distortion of several well-known
RPSRs, as well as the best possible distortion achieved by any rule in this class. For the latter
part, we employ an iterative technique that searches through the (continuous) domain of RSPRs,
aided by distortion lower bounds for rules in this class obtained as solutions to linear programs,
making use of classic characterization results from the literature [9, 20].

All of our results are enabled by a novel characterization of the structure of the worst-case instances
for any (ordinal) voting rule, by means of what we refer to as dichotomous utilities, which could be
of independent interest.

1.2 Related Work and Discussion

We discuss how our results for Questions 1 and 2 improve upon the state of the art results in the
literature. For more works on the general topic of distortion in computational social choice theory,
we defer the reader to the survey of Anshelevich et al. [7].

For finding the preference profile-optimal rule and its distortion in Question 1, Boutilier et al.
[13] provided a polynomial-time algorithm based on linear-programming. At a high level, their linear
program finds the smallest possible distortion value subject to a set of constructed inequalities that
ensure that this distortion is feasible for some voting rule. In turn, these inequalities are obtained
from the dual of a different linear program that checks the feasibility of a given distortion; the use of
duality here is crucial, to avoid their resulting optimization program having quadratic constraints.
Boutilier et al. [13], as also evidenced by the phrasing of Theorem 3.4. in their work, primarily
presented their algorithm as a proof of polynomial-time solvability of the problem. That said,
merely establishing polynomial-time solvability can be achieved by a simpler linear program, one
with infinitely many constraints, coupled with an appropriate separation oracle so that it can be
solved by the ellipsoid method; see Section 3 for more details. Still, even the algorithm of [13]
turns out to not be fast enough for several applications, e.g., for computing the preference profile-
optimal rule on a large set of inputs, to be used as a performance benchmark against other voting
rules in experiments. Our algorithms are faster in theory and in practice, making them much
more appealing for such applications. The main technical contribution that allows us to devise
these faster algorithms is our novel structural restriction of dichotomous utilities as the worst-case
preference profiles.

Finally, we remark that one can interpret our algorithm as a general social choice rule with
a best-possible distortion of O(

√
m). Compared to the rule of Ebadian et al. [16], ours seems

conceptually simpler, as it is based on linear programs. In contrast, the rule in [16] uses the concept
of stable lotteries, which are computed via applying a multiplicative weight updates algorithm to
approach the value of a certain zero-sum game, see [23] for more details.

Moving on to the exact distortion of RPSRs in Question 2, the literature had not really provided
any methods for this task prior to our work. The most related approach is due to Filos-Ratsikas
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and Miltersen [18], who studied (among other voting rules), the exact distortion of RPSRs for three
candidates, but crucially, for a different normalization of the utilities called unit-range.1 Given our
structural characterization of the worst-case utility profiles, their approach is in principle applicable
for unit-sum as well, but it results in non-convex quadratic programs with at least 18 variables and
constraints, even for m = 3. Our program, which is different from the one of [18], has much fewer
constraints and can thus easily handle instances with m = 5 alternatives; we provide more details
about the comparison with [18] in Appendix F.

To find the best RPSR and its distortion, we repeatedly apply our quadratic program on a set of
candidate RPSRs. To guide our search, we follow another idea of [18], and obtain those candidates
as solutions to a sequence of zero-sum games, which can easily be solved via linear programming.
The zero-sum game formulation is enabled by well-known characterizations of RPSRs due to Gib-
bard [20] and Barbera [9] (see also [18]), and can also be seen as an application of Yao’s minimax
principle [29].

2 Preliminaries

Let [t] := {1, 2, . . . , t} for t ∈ N. For a set S, let ∆(S) be the set of probability distributions over
S.

Utilitarian voting.

Let N be a set of n agents and A be a set of m alternatives. We assume that each agent i ∈ N
has a utility function ui : A → R>0 over the alternatives. Following the literature, we adopt
the unit-sum assumption:

∑
a∈A ui(a) = 1 for each i ∈ N [8]. These utility function collectively

form the utility profile ~u. With slight abuse of notation, we use ui(p) := Ea∼p ui(a) to denote
the (expected) utility of agent i under distribution p ∈ ∆(A). Given a utility profile ~u, the social
welfare of an alternative a ∈ A is sw(a, ~u) :=

∑
i∈N ui(a) and that of a distribution p ∈ ∆(A) is

sw(p, ~u) :=
∑

i∈N ui(p). We say that an alternative a∗ is optimal if it has the maximum social
welfare, i.e. a∗(~u) ∈ arg maxa∈A sw(a, ~u). We might drop ~u when it is clear from the context.

Elicitation and aggregation.

Based on their underlying utilities, agents submit their votes in form of a ranking over the alterna-
tives. Let σi : [m] → A denote the ranking of agent i ∈ N over the alternatives. We use a �i b to
show that agent i prefers alternative a to alternative b, and ranki(a) := σ−1

i (a) to show the rank of
alternative a in agent i’s ranking; thus a �i b ⇔ ranki(a) < ranki(b). We say that σi is consistent
with utility function ui if, for any pair of alternatives a, b ∈ A, a �i b implies ui(a) > ui(b); let C(σi)
denote the set of utility functions consistent with σi. These rankings collectively form a preference
profile ~σ. We say that utility profile ~u is consistent with ~σ if ui ∈ C(σi) for each agent i ∈ N ; let
C(~σ) denote the set of utility profiles consistent with ~σ.

1In unit-range, the values of each agent for the alternatives lie in [0, 1] with the maximum value being 1 and
the minimum value being 0. In unit-sum, the values of each agent for the alternatives sum to 1. The unit-sum
normalization is the most widely-used in the related literature, see [7, 8].
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Voting rules.

A (randomized) voting rule f takes a preference profile ~σ as input and outputs a distribution
f(~σ) ∈ ∆(A) over the alternatives. If f(~σ) always has singleton support, we say f is deterministic
and, with slight abuse of notation, use f(~σ) to denote the alternative in the support.

Distortion.

The distortion of a distribution p ∈ ∆(A) on a utility profile ~u is its social welfare approximation,

dist(p, ~u) := maxa∈A sw(a,~σ)
sw(p,~σ) . Its distortion on a preference profile ~σ is its worst-case distortion on

any utility profile ~u ∈ C(~σ): dist(p, ~σ) := sup~u∈C(~σ) dist(p, ~u); note that this supremum is attained
at some ~u ∈ C(~σ) due to a continuous function being optimized over a compact domain and, thus,
can be replaced by a maximum. The distortion of a voting rule f is the worst-case distortion of
its output over all preference profiles: dist(f) = sup~σ dist(f(~σ), ~σ), where the worst case is taken
over all preference profiles with m alternatives (and any number of agents). The instance-optimal
rule f∗ is the rule that, on each preference profile ~σ, outputs the distribution with the smallest
distortion: f∗(~σ) ∈ arg minp∈∆(A) dist(p, ~σ).

3 Computing the Optimal Distribution

In this section, we focus on computing the instance-optimal rule f∗, i.e., computing the optimal
distribution in arg minp∈∆(A) dist(p, ~σ) given a preference profile ~σ. Boutilier et al. [13] prove that
this can be accomplished in polynomial time. Specifically, they first write a nonlinear program
for the problem, which involves multiplying the probability of selecting an alternative with the
utility of an agent for the alternative, both variables of the program. Then, by considering its dual
program and combining it with the primal, they design a complicated linear program (LP) whose
optimal solution yields the optimal distribution and its corresponding distortion. Their full LP is
provided in Appendix A. This LP has O(nm2) variables and O(nm2) constraints, establishing that
the optimal distribution (and its corresponding distortion) can be computed in polynomial time.

While Boutilier et al. [13] do not point it out, polynomial-time computability is actually much
easier to establish. Given a preference profile ~σ, one can write the following straightforward LP.

max β

s.t.
∑
a∈A

pa · sw(a, ~u) > β ·max
a∈A

sw(a, ~u), ∀~u ∈ C(~σ) (1)∑
a∈A

pa = 1 (2)

pa > 0, ∀a ∈ A. (3)

Variable pa denotes the probability of selecting alternative a and constraint (1) requires that
dist(p, ~u) 6 1/β under every utility profile ~u ∈ C(~σ). Thus, 1/β becomes an upper bound on
the distortion of p and maximizing β yields the optimal distribution p along with its distortion
1/β. While this LP has uncountably many constraints, it admits a straightforward polynomial-
time separation oracle. Given values of β and (pa)a∈A, checking whether constraints (2) or (3) are
violated is trivial, and finding a violated constraint in (1) (if one exists) amounts to solving the
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following m linear programs, one for each a∗ ∈ A:

min
∑
a∈A

pa ·
(∑
i∈N

ui,a

)
− β ·

(∑
i∈N

ui,a∗

)
s.t. ui,a > ui,b, ∀i ∈ N, a, b ∈ A : a �i b∑

a∈A
ui,a = 1, ∀i ∈ N

ui,a > 0, ∀i ∈ N, a ∈ A.

If the optimal value for any of these LPs is less than 0, the corresponding utility profile identifies
a violated constraint in the original LP. Thus, the original LP can be solved in polynomial time
using the ellipsoid method.

The main contribution of Boutilier et al. [13], therefore, is not polynomial-time computability,
but rather that they provide a single LP with O(nm2) variables and O(nm2) constraints to be
solved, which is much faster than solving the above LP with uncountably many constraints using
a separation oracle that solves m LPs each with O(nm) variables and constraints in each iteration.

Our main contribution in this section is to devise a much simpler LP with only O(nm) variables
andO(nm) constraints, and without using sophisticated techniques such as LP duality. The bedrock
of our improvement is a novel structural characterization of the worst-case utility profile for a
distribution p on a preference profile ~σ, which may be of independent interest. We also use this
characterization in Section 4.

3.1 Worst-Case Utility Profiles

We prove that the distortion of any distribution p on any preference profile ~σ is attained at some
utility profile ~u ∈ C(~σ) with the following dichotomous structure.

Definition 1 (Dichotomous Utilities). The (unit-sum) dichotomous utility function with respect
to ranking σ over A and r ∈ [m] is

1σ,r(a) =

{
1/r if σ−1(a) 6 r,

0 o.w.;

that is, the agent is indifferent among her top r alternatives and has zero utility for the remaining
alternatives. We say that a utility profile ~u is dichotomous if the utility function ui of each agent
i ∈ N is dichotomous with respect to σi and some ri ∈ [m].

We are ready to prove our structural insight.

Theorem 1. For any distribution p ∈ ∆(A) and preference profile ~σ, there exists a dichotomous
utility profile ~u∗ ∈ C(~σ) where p attains its worst distortion (i.e., dist(p, ~u∗) = dist(p, ~σ)).

Proof. Let d = dist(p, ~σ). Then,

max
~u∈C(~σ)

maxa∗∈A sw(a∗, ~u)

sw(p, ~u)
= d ⇐⇒

max
~u∈C(~σ)

max
a∗∈A

sw(a∗, ~u)− d · sw(p, ~u) = 0 ⇐⇒
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max
a∗∈A

max
~u∈C(~σ)

∑
i∈N

(ui(a
∗)− d · ui(p)) = 0 ⇐⇒

max
a∗∈A

∑
i∈N

max
ui∈C(σi)

(ui(a
∗)− d · ui(p)) = 0, (4)

where in the last transition, the maximum can be taken over each agent separately due to the
expression being linear over the agents.

It remains to show that, for a fixed alternative a∗ and agent i, ui(a
∗)−d ·ui(p) is maximized at

some dichotomous utility function u∗i ∈ C(σi). Note that dichotomous utility functions with respect
to σi are linearly independent and span the space C(σi) of unit-sum utility functions consistent with
σi. Hence,

max
ui∈C(σi)

ui(a
∗)− d · ui(p)

= max
~α∈∆m

(∑
r∈[m]

αr · 1σi,r(a∗)− d ·
∑

r∈[m]
αr · 1σi,r(p)

)
= max

~α∈∆m

∑
r∈[m]

αr · (1σi,r(a∗)− d · 1σi,r(p)) ,

where ∆m = {~α ∈ [0, 1]m :
∑

r∈[m] αr = 1} is the (m−1)-simplex. Due to the final expression being
linear in ~α, the maximum is attained at α∗ where α∗r = 1 (i.e., u∗i = 1σi,r) for some r ∈ [m].

Given Theorem 1, we can replace the maximum over all ui ∈ C(σi) in Equation (4) with a
maximum over dichotomous utility functions with respect to σi to obtain:

dist(p, ~σ) = d ⇐⇒

max
a∗

∑
i∈A

max
r∈[m]

1

r

(
I [ranki(a

∗) 6 r]− d ·
r∑
`=1

pσi(`)

)
= 0. (5)

We revisit Equation (5) later to derive our results.

3.2 A Faster Polynomial-Time Algorithm

Building on the novel characterization of worst-case utility profiles from Theorem 1, we design a
simpler linear program for computing the instance-optimal rule. This is the main result of this
section.

Theorem 2. Given a preference profile ~σ, there exists a linear program with O(nm) variables,
O(nm) constraints, and O(nm) size for computing the optimal distribution p∗ ∈ arg minp∈∆(A) dist(p, ~σ)
and its distortion dist(p∗, ~σ).

Proof. We derive the final linear program gradually via a number of insights and transformations.
Let ~σ be the given preference profile. First, note that the distortion dist(p, ~σ) of a distribution p is
the minimum value d for which Equation (5) holds. This yields the following optimization problem
which computes the optimal distribution p and its corresponding distortion d.

min d

s.t. δi,a >
1

r

(
I[ranki(a) 6 r]− d ·

∑r

`=1
pσi(`)

)
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∀i ∈ N, a ∈ A, r ∈ [m]∑
i∈N

δi,a 6 0 ∀a ∈ A∑
a∈A

pa = 1

pa > 0 ∀a ∈ A.

Here, δi,a upper bounds the expression from Equation (5) corresponding to a fixed a∗ = a and
i ∈ N , so the constraint

∑
i∈N δi,a 6 0 for all a ∈ A implements precisely Equation (5).

Linearization. However, this is not a linear program due to the multiplication of d with pa-s in
the first constraint. To linearize it, we introduce a new variable p̂a = d · pa for each a ∈ A. Since∑

a∈A p̂a = d, the above program is equivalent to

min
∑

a∈A
p̂a

s.t. δi,a >
1

r

(
I[ranki(a) 6 r]−

∑r

`=1
p̂σi(`)

)
∀i ∈ N, a ∈ A, r ∈ [m]∑n

i=1
δi,a 6 0 ∀a ∈ [m]

p̂a > 0 ∀a ∈ [m]

This is now a linear program, whose optimal solution p̂ yields both the optimal distortion∑
a∈A p̂a and the optimal distribution given by pa = p̂a/

∑
b∈A p̂b for all a ∈ A. While it already

has O(nm) variables, an improvement over O(nm2) variables of Boutilier et al. [13], it still has
O(nm2) constraints, the same as them.

Optimizing the number of constraints. To reduce the number of constraints to O(nm), the
key observation is the following reconstruction of the constraints that bound δi,σi(r). For i ∈ N and
r ∈ [m], let si,r :=

∑r
`=1 p̂σi(`). Then, the first constraint in the above program can be written as

δi,σi(r) > max
{

max
`∈[r−1]

−1

`
· si,`, max

`∈[r,m]

1

`
· (1− si,`)

}
. (6)

Define αi,r = max`∈[r]−1
` · si,` and βi,r = max`∈[r,m]

1
` · (1− si,`). Then, we can bound δi,σi(r) using

only two constraints:
δi,σi(r) > αi,r−1, and δi,σi(r) > βi,r.

The α’s and β’s can be set using O(nm) constraints as in the final linear program below.
Linear program P consists of O(nm) and O(nm) constraints. The third constraint type involves

n variables and there are m of such constraints. All other constraints involve at most 3 variables.
Thus, the size (number of non-zero coefficients) of P is also O(nm).
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Linear Program P

min
∑
a∈[m]

p̂a

s.t. δi,σi(r) > αi,r−1 ∀i ∈ N, r ∈ [2,m− 1]

δi,σi(r) > βi,r ∀i ∈ N, r ∈ [m]∑n

i=1
δi,a 6 0 ∀a ∈ [m]

Partial sums:

si,1 = p̂σi(1) ∀i ∈ N
si,r = si,r−1 + p̂σi(r) ∀i ∈ N, r ∈ [2,m]

Top partial maximums:

αi,r > αi,r−1 ∀i ∈ N, r ∈ [2,m− 1]

αi,r >
1

r
· (−si,r) ∀i ∈ N, r ∈ [m− 1]

Bottom partial maximums:

βi,r > βi,r+1 ∀i ∈ N, r ∈ [m− 1]

βi,r >
1

r
(1− si,r) ∀i ∈ N, r ∈ [m]

Variable ranges:

p̂a > 0 ∀a ∈ [m]

δi,σi(r), αi,r, βi,r ∈ R ∀i ∈ N, r ∈ [m]

3.3 Distortion of a Rule on a Preference Profile

While the LP above computes the instance-optimal rule f∗ (i.e., computes the optimal distribution
p∗ on a given preference profile ~σ), in practice one may wish to implement a different voting rule
f due to, for example, its normative properties or the status quo. In such cases, one may wish
to know the distortion of the distribution f(~σ) it returns on ~σ, which may not be the optimal
distribution p∗.

To the best of our knowledge, the only approach to solve this problem prior to our work was to
use the linear program of Boutilier et al. [13] and fixing the selection probabilities to match f(~σ)
(instead of letting them be variables). Adapting this approach to our optimized linear program
P already provides a faster algorithm. However, known algorithms to solve a linear program with
Θ(nm) variables and Θ(nm) size still take Ω((nm)3) time, which can be very time consuming.
Using insights from Theorem 1, we develop an O(nm log(nm)) time algorithm for this problem
which avoids solving linear programs.
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Theorem 3. There is an algorithm to compute the distortion dist(p, ~σ) of distribution p on pref-
erence profile ~σ in O(nm log(nm)) time.

The first step is to design a fast subroutine for checking whether dist(p, ~σ) 6 d for a given
threshold d.

Lemma 1. There is an algorithm that given a preference profile ~σ, distribution p, and a real number
d checks if distortion of p w.r.t ~σ is at most d in linear time O(nm). If not, it finds a witness
utility profile for which distortion of p is more than d.

We defer the proof of this lemma result to Appendix B, but the key idea is to quickly compute
Equation (5) as both p and d are given. For each agent i and alternative a, we compute the index
hi,a(d) such that the dichotomous utility function corresponding to σi and hi,a(d) maximizes the
inner expression in Equation (5):

hi,a(d) = arg max
r∈[m]

{1

r
·
(
I [ranki(a) 6 r]− d ·

∑r

`=1
pσi(`)

)}
. (7)

This allows evaluating the left hand side of Equation (5): if it is non-positive, the distortion is
indeed at most d, and if it is positive, the utility profile where each agent i has the aforementioned
dichotomous utility function forms the sought witness.

Lemma 1 immediately implies that one can perform a binary search for the desired distortion
d∗ := dist(p, ~σ) ∈ [1,∞] and get ε-close in time nm log(d∗/ε). However, we can prove that, instead
of searching for d∗ in a continuous range, we can selectively focus on at most nm potential distortion
values. This is because hi,a(d) defined in Equation (7) changes at only a limited number of “pivotal”
values of d. However, computing these pivotal values across all i ∈ N and a ∈ A in only O(nm)
time requires additional ideas based on convex hulls (specifically, Graham’s Scan [1]). The proof
of the next result is relegated to Appendix B.

Lemma 2. There exists a set D = {d0 = 0, d1, d2, . . . , d|D|−1 = ∞} of O(nm) values d0 6 d1 6
. . . 6 d|D|−1, computable in O(nm) time, such that for all ` ∈ [|D| − 1] and all d′ ∈ [d`−1, d`), it
holds that hi,a(d

′) = hi,a(d`−1) for all i ∈ N and a ∈ A.

Using Lemmas 1 and 2, we can prove Theorem 3.

Proof of Theorem 3. By Lemma 2, we can find a set D of O(nm) values such that for any two
consecutive values d`−1, d` ∈ D, the utility profile maximizing Equation (5) stays unchanged across
all d ∈ [d`−1, d`]. By performing a binary search on this set of values, we can find the maximum
d`−1 such that dist(p, ~σ) > d`−1 by invoking Lemma 1. Then, we would know that d∗ ∈ [d`−1, d`).
Since there is a unique worst-case utility profile ~u in this range, the actual distortion can simply be
computed as dist(p, ~u). The O(nm log(nm)) running time is due to O(log(nm)) calls to the O(nm)
time algorithm from Lemma 1 as part of the binary search; the rest of the steps amount to O(nm)
time.

4 Distortion of Randomized Positional Scoring Rules

In the previous section, we were concerned with computing the distortion of a given distribution
or the optimal distribution on a given preference profile. However, the (overall) distortion of a rule

10



requires computing its worst-case distortion across all preference profiles — a significantly more
complex task, for which prior work provides no algorithms to the best of our knowledge. Our main
contribution in this section is to devise such an algorithm for the following well-studied family of
rules.

Randomized Positional Scoring Rules.

Given a scoring vector ~s = (s1, s2, . . . , sm), the positional scoring rule (PSR) assigns a score of sj
to an alternative each time it appears at the j-th position in the ranking of any agent (for each j),
and (deterministically) selects an alternative with the highest total score. A randomized positional
scoring rule (RPSR) f~s assigns scores to alternatives in the same way, but selects each alternative
with probability proportional to its score. On preference profile ~σ, this selects each alternative
a ∈ A with probability P~s(a, ~σ) := Pr[f~s(~σ) = a] = 1

n

∑
i∈N sranki(a).

These rules, also called point-voting schemes [9], are known due to their strategyproofness [20].
Ebadian et al. [17] provide asymptotic distortion bounds for many rules in this family.

In this section, we first devise an algorithm for computing the (exact) distortion of a given
RPSR. Then, we iteratively use our algorithm, together with an appropriately constructed linear
program, to find the RPSR with the smallest distortion for a given number of alternatives m.
Finally, we present the bounds achieved via our techniques for up to m = 5 alternatives, for both
the best RPSR and commonly used RPSRs from the literature.

4.1 Worst-Case Utility and Preference Profiles

Let A = {a1, a2, . . . , am}. Let us define three properties of a pair of preference profile ~σ and utility
profile ~u ∈ C(~σ).

(P1) ~u is dichotomous.

(P2) sw(aj , ~u) > sw(aj+1, ~u) for all j ∈ [m− 1].

(P3) For each agent i ∈ N and alternatives aj , aj′ ∈ A with j < j′, if ui(aj) = ui(aj′), then
aj′ �i aj .

Property (P1) is our insight from Theorem 1 that the worst-case utility profile ~u is dichotomous
WLOG. Property (P2) uses neutrality of RPSRs (i.e., that they do not depend on the names of
the alternatives) to further restrict the search space for ~u. Unlike in Section 3 where the preference
profile ~σ was given, here we seek to identify its worst case, for which Property (P3) is our novel
insight.

Let Wm = {(σ1, u1), . . . , (σt, ut)} denote the set of possible pairs of preference ranking σi and
utility function ui ∈ C(σi) that any agent can have in any pair of preference profile ~σ and utility
profile ~u ∈ C(~σ) satisfying Properties (P1) to (P3); note that t := |Wm| and from here on, with
slight abuse of notation, we will use i to index a pair (agent type) in Wm instead of denoting an
individual agent. The next lemma shows that the three properties above significantly reduce the
search space.

Lemma 3. |Wm| 6 2m − 2.
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Table 3 in Appendix C shows the 23 − 2 = 6 possible pairs of preference ranking and utility
function that we need to consider for m = 3 alternatives. Finally, we show that every RPSR
achieves its worst distortion on a pair (~σ, ~u) satisfying Properties (P1) to (P3). The proofs of both
these lemmas are in Appendix C.1.

Lemma 4. For every randomized positional scoring rule f~s, there exists a pair (~σ, ~u) of preference
and utility profiles satisfying Properties (P1) to (P3) at which f~s attains its worst distortion.

4.2 Computing the Distortion of an RPSR

Fix any RPSR f~s. For i ∈ [t], define qi to be the fraction of agents who have preference ranking
and utility function (σi, ui) ∈Wm. Note that the 1× t vector q = (q1, . . . , qt) satisfies

∑
i∈[t] qi = 1

and can capture any worst-case instance (~σ, ~u) satisfying Properties (P1) to (P3), for any number
of agents n.

We want to understand the distortion of f~s at a given q and then write a program to optimize
over q. Let Um×t be a matrix where Uj,i = ui(aj), and Pm×t be a matrix where Pj,i is the score
that candidate aj gets from any agent with preference ranking σi, i.e. Pj,i = sranki(aj). Also, define
Ct×t = UᵀP . For example, when m = 3, matrices U and P corresponding to the set Wm from
Table 3 are shown in Appendix C.

From the above, we can see that if q represents the instance (~σ, ~u), then sw(aj , ~u) = n · q · Uᵀ
j

and P~s(aj , ~σ) = q ·P ᵀ
j , where Uj and Pj denote the j-th row of U and P , respectively. This means

dist(f~s) =
q · Uᵀ

1∑
j∈[m](q · U

ᵀ
j )(q · P ᵀ

j )
=

q · Uᵀ
1

q
(∑

i U
ᵀ
j · Pj

)
qᵀ

=
qUᵀ

1

qCqᵀ
.

Hence, we arrive at the following optimization program to compute the distortion of the given
RPSR f~s.

max
qUᵀ

1

qCqᵀ

s.t. q · Uᵀ
j 6 q · Uᵀ

1 ∀j ∈ [m]∑
i∈[t] qi = 1

qi > 0 ∀i ∈ [t].

To transform this optimization program to a form more amenable to solving via standard solvers,
we add a variable D to capture the inverse of the distortion, i.e., 1/dist(f~s). The new objective is
to minimize D, and we add a quadratic constraint D · (qᵀU1) > qᵀCq to ensure that D remains
an upper bound on the inverse of the distortion. The resulting optimization program has a linear
objective, a set of linear constraints, and a single quadratic constraint.

The (inverse of the) solution to Program Q yields the distortion dist(f~s) of a given RPSR f~s as
well as the instance (~σ, ~u) where the worst distortion is attained; the latter part will be useful in
our algorithm in Section 4.3 for finding the best RPSR.

We remark that Program Q is not convex, and thus not known to be polynomial-time solvable,
even to a given precision. Still, for relatively small values of m (e.g., up to m = 5), standard
solvers are able to provide globally optimal solutions within reasonable running times as we show
in Section 4.4.
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Quadratic Program Q

min. D

s.t. D
∑
i∈[t]

qi · U1,i >
∑
i∈[t]

∑
k∈[t]

qi · qk · Ci,k∑
i∈[t]

qi · Uj,i 6
∑
i∈[t]

qi · U1,i ∀j ∈ [m]

∑
i∈[t] qi = 1

qi > 0 ∀i ∈ [t].

4.3 Finding the Best Possible RPSR

In this section, we make use of our quadratic program Q to find the RPSR that achieves the
minimum distortion (and that distortion itself) for a given number of alternatives m. The idea is
to use program Q repeatedly to search over the space of all RPSRS. Since this is a vast search space
and solving the non-convex program Q takes time, we employ the technique of Filos-Ratsikas and
Miltersen [18], which uses zero-sum games (and as a result, linear programs) to aid the search and
quickly converge to the optimal solution without exploring too many points in the search space.

Lower bounds via zero-sum games

Filos-Ratsikas and Miltersen [18, Theorem 2] show that any RPSR for m alternatives is a convex
combination of rules F km for k ∈ [m]: rule F km (a) selects an agent uniformly at random and (b) select
one of her k most-preferred alternatives uniformly at random. This result of [18] is in fact almost
a direct corollary of a result of Barbera [9], which was in turn obtained from the characterization
of Gibbard [20] of truthful rules.

By applying Yao’s minimax principle [29], we can effectively transform the design of the optimal
RPSR into a (series of) zero-sum game(s) G. In a game G, the pure strategies of the maximizer
are the rules F km for k ∈ [m] and the pure strategies of the minimizer are a set of instances I
(the construction of this set is explained in the next paragraph), where an instance is a pair of
preference and utility profiles (~σ, ~u) such that ~u ∈ C(~σ). When the maximizer chooses rule F jm
and the minimizer chooses instance (~σ, ~u) ∈ I, the reward in the corresponding cell of the game
is the inverse of the corresponding distortion, i.e., 1/dist(F jm(~σ), ~u). From the characterization of
Filos-Ratsikas and Miltersen [18], the set of mixed strategies of the maximizer is precisely the set of
RPSRs. By computing an optimal mixed strategy for the maximizer, we obtain an RPSR with the
smallest distortion in the worst case over all instances in I (and this distortion value is the inverse
of the value of game G). Game G can be solved by a standard formulation of zero-sum games as
linear programs.

An iterative algorithm

Throughout our algorithm, we maintain (a) the current distortion upper bound du, (b) the current
distortion lower bound d`, (c) a set of “bad” instances I, and (d) a candidate RPSR fc. Initially
du =∞, d` = 0, I = ∅, and fc is any RPSR.
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In each iteration, we run the quadratic programQ on the rule fc, which returns both dist(fc) and
the worst-case instance (~σ, ~u) at which this distortion is attained. We update du ← min(du, dist(fc))
and add (~σ, ~u) to I. Then, we construct the matrix game G described above with the pure strategies
of the maximizer being the rules F km and the pure strategies of the minimizer being the instances
in I. We update d` to be the inverse of the value of this game G and fc to be the optimal mixed
strategy of the maximizer in G. We repeat this process until a stopping criterion has been met,
which is that du − d` 6 ε for a sufficiently small ε; the choice of ε in our experiments is described
in the next section. During this process, we keep track of the RPSR that achieves the distortion of
du, and at termination, output that as our estimate of the best RPSR. Note that du is the exact
distortion of this rule, and thus, a valid upper bound on the distortion of the best RPSR. Similarly,
d` is also a valid lower bound on the distortion of any (and thus the best) RPSR.

4.4 Bounds for a Small Number of Alternatives

By deploying the techniques presented in the previous two subsections, we are able to compute
the exact distortion of several well-known RPSRs and of the best RPSRs for m ∈ {2, 3, 4, 5}
alternatives. In more detail, we employ the quadratic program Q that we develop in Section 4.2 to
compute the exact distortion of the following well-known RPSRs:

- Randomized Plurality, with scoring vector ~s = (1, 0, . . . 0),

- Randomized Borda, with scoring vector ~s = (m− 1, . . . , 1, 0),

- Randomized k-Approval, with scoring vector ~s = (1, . . . , 1, 0, . . . , 0), with k ones, for k = 2 and
k = 3,

- Randomized Veto, with scoring vector ~s = (1, 1, . . . 1, 0),

- Randomized Harmonic, with scoring vector ~s = (1, 1/2, . . . , 1/m),

- the “Golden Rule” [13] with scoring vector ~s = (1, 1/2, . . . , 1/m) + (1/m, . . . , 1/m). The Golden
Rule has the smallest asymptotic distortion among all RPSRs [11].

Using the iterative algorithm described in Section 4.3, with stopping criterion du − d` 6 0.005, we
also obtain (essentially) tight bounds on the distortion of the best RPSR for m alternatives. To
solve the quadratic program Q we use the Gurobi Optimization Solver. We remark that the main
computational bottlneck of this technique is solving the quadratic program; the aided search of
Section 4.3 terminated in at most 9 iterations in all cases.

We complement these results with bounds on the best (deterministic) PSRs to demonstrate the
advantages of randomization. To calculate these bounds, we first show that the (exact) distortion
of a given PSR can be computed by a linear program, which we present in Appendix D. Here, we
cannot use the zero-sum-game-aided search from Section 4.2, so we perform a simple grid search on
the space of PSRs to find the best PSR; this is still fast enough because we are now solving linear
(rather than quadratic) programs to compute the distortion of PSRs; see Appendix D for details.

To assess how close the best RPSR is to the best rule overall, we also present lower bounds
on the distortion of any randomized voting rule. To compute these, we employ a gradient-descent
style search over the space of preference profiles, employing our algorithm in Section 3.3 to find
the best distortion on each preference profile (see Algorithm 2 in Appendix B). More details are
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↓ Rule, m→ 2 3 4 5

Best Randomized LB 1.500 1.835 2.092 2.303

Best RPSR LB 1.500 1.870 2.188 2.473
Best RPSR UB 1.500 1.870 2.188 2.474

Harmonic Rule 1.556 1.987 2.354 2.682
Randomized 2-Approval 2.000 2.414 2.743 3.078

Randomized Borda 1.522 2.000 2.556 3.148
Golden Rule 1.714 2.276 2.751 3.173

Randomized Plurality 1.522 2.155 3.000 4.000
Randomized 3-Approval - 3.000 3.621 4.098

Randomized Veto 1.522 2.414 3.621 4.828

Best PSR UB 3 5.5 8.333 11.418

Table 1: The exact distortion of well-known RPSRs, and distortion bounds for the best RPSR, the
best PSR, and the best randomized rule.
presented in Appendix E. While the algorithm does not return the global optimum (which would be
the precise distortion of the instance-optimal rule), the optimal distortion it finds on any preference
profile serves as a valid lower bound on the distortion of any rule.

Our results are summarized in Table 1. The benefits of using randomization are evident, as
the distortion of deterministic PSRs are notably worse than those of even common RPSRs. On
the other side of the spectrum, the best RPSRs are quite close (exactly matching for m = 2) to
the best randomized rules in general. We provide the best RSPRs achieving the displayed bounds
in Table 4 in Appendix D. Among common RPSRs, most are near-optimal for m = 2, but the
differences between them are more pronounced for m > 3. Interestingly, with the exception of
m = 2, the Randomized Harmonic rule achieves the lowest distortion among all common RPSRs,
even though the Golden Rule has a better asymptotic distortion (and the best asymptotic distortion
among all RPSRs) [17]. This showcases that the hidden constants in the asymptotic bounds can
make a difference for small values of m.

5 Experiments
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Figure 3: Running time of P and BCHL+ on synthetic data
(n = 1000).

m φ=0.1 φ=0.5 φ=0.8 S.P P.L.

10 3.74 2.07 3.1 0.77 3.29

20 9.71 5.13 8.08 0.43 7.28

30 19.6 9.09 15.79 5.48 15.42

40 26.8 23.37 20.18 8.54 18.91

50 32.28 31.06 28.89 10.61 29.84

Table 2: Speed-up of P over
BCHL+ .

In this section, we present a comparative analysis between our linear program P and the LP
of Boutilier et al. [13] (referred to as BCHL+ ) for computing the optimal distribution (and its
corresponding distortion) on a given preference profile. We test on preference profiles generated
synthetically as well as drawn from real-world datasets. To solve the LPs, we use Gurobi [22], with
each run utilizing 4 cores and 50 GB of memory.

5.1 Synthetic Data

We generated instances from three statistical models: the Mallows model with parameter φ ∈
{0.1, 0.2, 0.5, 0.8, 1}, the Plackett-Luce model, and random2 Single-Peaked preferences; see [28]
for a description of these models. All instances were comprised of n = 1000 agents. For m ∈
{10, 20, 30, 40, 50} alternatives and each model, we generated 10 instances and calculated the aver-
age running time along with the standard error.

Results. Figure 3 and Table 2 provide a summary of the running time comparison between the
two LPs on synthetic data. Notably, BCHL+ failed to terminate in 3 hours on every instance
with m = 60 under every model, except for the single-peaked model (Figure 3c), whereas P
completed in less than 150 seconds on each such instance. The speed-up (ratio of average running
times) achieved by P is detailed in Table 2. For the larger values of m ∈ {30, 50}, P consistently
outperformed BCHL+ across all statistical models, achieving as much as 10x to 30x speed-up, with
the performance gap widening with m increasing. The only case where BCHL+ performed better
was small instances (m ∈ {10, 20}) generated using the Single-Peaked model. Our experiments
demonstrate a significant improvement in the efficiency for P over BCHL+ .

5.2 Preflib Data

We utilized the 7742 real-world preference profiles from Preflib [26] of type SOC (strict order -
complete order). The largest instances had as many as n = 14081 voters and as many as m = 1080
alternatives.

Results The running times of BCHL+ and P on Preflib data are illustrated in Figures 1 and 2,
with color intensities representing log10 of the running time. Here are the various percentiles of the
running times of the two LPs across the Preflib instances.

2We sampled the positions of agents and alternatives iid in [0, 1] and derived preferences based on distances.
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Rule 50% 90% 99% 99.5% mean

BCHL+ 51.63 653.83 1737.71 2582.31 218.28†

P 0.84 4.6 21.84 257.16 9.42
† excluding 20 instances where BCHL+ did not finish in an hour

Our LP P was successfully solved in under a minute in 99% of the instances. On average across all
instances, P completed in under 10 seconds, marking a speed-up of more than 20x over BCHL+ .
Additionally, instances denoted by × on Figures 1 and 2 are the ones where the algorithms failed to
terminate in an hour. These were 20 instances for BCHL+ versus 5 instances for P; P concluded
on these 5 instances within 1.5 hours, while BCHL+ still did not terminate on those 20 instances
after 3 hours.

6 Discussion and Future Work

An interesting question is whether we can extend our results in Section 4.4 to larger values of m.
The bottleneck is the running time of the quadratic program Q. Could there be a method that
computes the distortion of a given RPSR faster? We conjecture that the associated computational
problem is NP-hard, and therefore a polynomial-time algorithm should not be expected. Proving
this conjecture is an interesting avenue for future work. Finally, could we extend our approach in
Section 4.1 to voting rules beyond RPSRs? One candidate class of rules would be support voting
schemes, which, together with RPSRs complete the class of truthful randomized rules on ordinal
preferences [9, 20].

We studied single winner selection, where the goal is to choose a single alternative as the winner.
Some of our techniques may be applicable to related settings such as multiwinner selection, partici-
patory budgeting, matching and assignment problems, incomplete preferences, domain restrictions,
and metric distortion problems.
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Appendix

In this supplementary material (referred to as “Appendix” in the main text), we include proofs and
details.

A The LP of Boutilier et al. [13]

We include the LP of Boutilier et al. [13] here for completeness. For details about the logic behind
this linear program and its correctness, we refer the reader to the original paper.

Let ~σ be the queried preference profile, for which we want to find minp dist(p, ~σ). For each
a ∈ A, define a variable pa, and let D = (minp dist(p, ~σ))−1 be a variable in the LP that its inverse
corresponds to the optimal distortion. The LP of Boutilier et al. [13] is defined as follows.

Linear Program of Boutilier et al. [13]

max. D

s.t. INEQ({pa}a∈A, D, a∗) is satisfied ∀a∗ ∈ A∑
a∈A

pa = 1

pa > 0 ∀a ∈ A,

INEQ({pa}a∈A, D, a∗) :

∑
i∈N

yi,a∗ > 0

D +
∑
a∈A

xa,a∗ 6 0

pa + xa,a∗ − yi,a∗ − z1,i,a∗ > 0 ∀i ∈ N, a = σi(1)

pa + xa,a∗ − yi,a∗ − zr,i,a∗ + zr−1,i,a∗ > 0

∀i ∈ N, a = σi(r) : r ∈ [2,m− 1]

pa + xa,a∗ − yi,a∗ + zm−1,i,a∗ > 0 ∀i ∈ N, a = σi(m)

xa,a∗ > 0 ∀a ∈ A \ {a∗}
zr,i,a∗ > 0 ∀r ∈ [m− 1], i ∈ N

For each a ∈ A, the number of variables and constraints in INEQ(p,D, a∗) is O(nm). Thus, the
total number of variables and constraints is O(nm2).

B Omitted Details from Section 3
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B.1 Proof of Lemma 1

Lemma 1. There is an algorithm that given a preference profile ~σ, distribution p, and a real number
d checks if distortion of p w.r.t ~σ is at most d in linear time O(nm). If not, it finds a witness
utility profile for which distortion of p is more than d.

Proof. We demonstrate that Algorithm 1 accurately answers the query. According to Equation (5),
dist(p, ~σ) 6 d if and only if

max
a

∑
i∈A

max
r∈[m]

1

r

(
I [ranki(a) 6 r]− d ·

r∑
`=1

pσi(`)

)
6 0.

Our objective is to assess the left-hand side of the above equation. This is feasible if we have the
value for each agent i and alternative a defined as

δi,a = max
r∈[m]

1

r

(
I [ranki(a) 6 r]− d ·

r∑
`=1

pσi(`)

)
. (8)

Hence,

dist(p, ~σ) 6 d ⇐⇒ max
a

∑
i∈N

δi,a 6 0.

The objective above is separable by agents. Therefore, it suffices to prove that for each voter i,
we can compute all δi,aa ∈ A in O(m) time. This is accomplished in lines 2-9 of Algorithm 1. We
calculate these values similar to the linear program P. Let si, r =

∑
`∈[r] pσi(r). These values can

be computed in O(m) time, as shown in line 4. Next, let

αi,r = max
`∈[r]
−1

`
· d · si,r.

These values can also be computed in O(m) time, as depicted in line 5. Each αi,r is the maximum
of the preceding one αi,r−1 and the new term −1

` · d · si,r. Similarly, define

βi,r = max
`∈[r]

1

`
− 1

`
· d · si,r,

and compute the series in O(m), as shown in line 6. With these values available, Equation (8) can
be computed in O(1) for each a ∈ A as follows:

δi,a = max{αi,ranki(a)−1, βi,ranki(a)−1},

as executed in line 7. Consequently, Algorithm 1 accurately determines whether dist(p, ~σ) 6 d or
not. If it exceeds d, we identify the candidate a∗ ∈ A that maximizes

∑
i∈N δi,a in O(nm) time (line

11). Having a∗ fixed, for each agent i, we can identify the dichotomous utility vector maximizing
Equation (8) in O(m) (using the auxiliary variable si,r =

∑r
`=1 pσi(`)) and return the witness utility

profile.
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Algorithm 1: CheckDistortion(of p, w.r.t. σ̃, is at most d)

Input: Preference Profile ~σ, distribution p
Output: Yes, No with a witness utility profile

1 for i ∈ N, a ∈ A do δi,a ← 0;
2 for i ∈ N do
3 si,0 ← 0, αi,0 ← −∞, βi,m+1 ← −∞;
4 for r = 1 to m do si,r ← si,r−1 + pσi(r);

5 for r = 1 to m do αi,r ← max{αi,r−1, −1
r · d · si,r } ;

6 for r = m to 1 do βi,r ← max{βi,r+1,
1
r · (1− d · si,r) };

7 for r = 1 to m do δi,σi(r) ← max {αi,r−1, βi,r} ;

8 if maxa∈A
∑

i δi,a 6 0 then
9 return Yes

10 else
11 a∗ ← arg maxa∈A

∑
i δi,a;

12 for i ∈ N do
13 r∗i ← arg maxr∈[m]

1
r (I [ranki(a

∗) 6 r]− si,r);
14 ui ← 1i,r∗i

; // Respective dichotomous utility

15 return No, due to utility profile {ui}i∈N

B.2 Proof of Lemma 2

Lemma 2. There exists a set D = {d0 = 0, d1, d2, . . . , d|D|−1 = ∞} of O(nm) values d0 6 d1 6
. . . 6 d|D|−1, computable in O(nm) time, such that for all ` ∈ [|D| − 1] and all d′ ∈ [d`−1, d`), it
holds that hi,a(d

′) = hi,a(d`−1) for all i ∈ N and a ∈ A.

Proof. Fix an agent i. We show that there are at most m pivotal values of d for i. Suppose
a = σi(r). As in Equation (6), break the maximum of hi,a(d) into two cases of hi,a(d) < r or
hi,a(d) > r. For the first case, the maximum is attained at one index independent of the value of

d, i.e., arg max`∈[r−1]

{
− 1

` · d ·
∑`

q=1 pσi(`)
}

is a constant function w.r.t. d (d > 0). For the latter

case, take fi,r(d) = max`∈[r,m]

(
1
` − d ·

(
1
`

∑`
q=1 pσi(q)

))
. Note that fi,r(d) is the convex hull of

lines li,`(d) = 1
` − d ·

(
1
`

∑`
q=1 pσi(q)

)
. The convex hull has at most m− r transition points (pivotal

d’s) between the lines Li,r = {li,`}`∈[r,m].
Next, we show that the convex-hull of Li,r, denoted by c-hull(Li,r) can be computed from

c-hull(Li,r+1) by adding line li,r and at most one new point (pivotal d) will be realized. At d = 0,
li,r has the maximum value of 1

r among Li,r. Thus, it will be included in c-hull(Li,r) at d = 0
(already in D). We can find the maximum d that li,r is in the convex-hull by iterating over the
lines in c-hull(Li,r) similar to the the Graham’s Scan algorithm [1] and add this point (pivotal d).
Therefore, the algorithm correctly finds the values of d such that between two consecutive ones,
hi,a(d) does not change for all a. The amortized running time per agent is O(m) since each line is
only added and removed once from the convex-hull.

22



Algorithm 2: MeasureDistortion(of f, w.r.t. σ̃)

Input: Preference Profile ~σ, voting rule f
Output: Distortion value of f(~σ) w.r.t. to ~σ

1 p← f(~σ), D ← {0,∞};
2 for i ∈ N do
3 si,0 ← 0; for r = 1 to m do si,r ← si,r−1 + pσi(r);

/* Find the upper convex hull of lines li,r(d) = 1
r − 1

r · si,r · d. */

4 upper-hulli ← ∅;
5 for r = m to 1 do
6 upper-hulli ← Add line lr(d) = 1

r − 1
r · si,r · d to upper-hulli using Graham’s Scan

algorithm;
7 d′i,r ← the maximum d such that li,r(d) appears in upper-hulli ; // d′i,r can be ∞
8 D ← D ∪ {d′i,r};

9 Sort values of D in increasing order;
10 Using the checker of Lemma 1, do binary search to find the maximum d ∈ D that

distortion of p w.r.t. ~σ is more than d, and find the corresponding utility profile ~u∗;
11 Find the final distortion value d∗ of p for ~u∗;
12 return d∗;

C Omitted Details from Section 4

C.1 Proof of Lemma 3

Lemma 3. |Wm| 6 2m − 2.

Proof. Since utility profiles are dichotomous, each ui partition the alternatives into two sets with
equal utility. We know that members of each of these two sets appear in the reverse order of �.
That means if we know the members of each set then σi is unique. So the number of different pairs
of (σi, ui) is equal to the number of ways in which we can partition the alternatives into two sets.
In addition we have to make sure that the first set (alternatives with 1/r utility) is non empty.
That means we have at most 2m− 1 such pairs. In addition we know that if a∗ is the only member
of the bottom set (the only one with zero utility), then by changing the utility function from 1m−1

to 1m we get a higher distortion. That means the set of all possible (σi, ui) includes at most 2m−2
members.

C.2 Proof of Lemma 4

Lemma 4. For every randomized positional scoring rule f~s, there exists a pair (~σ, ~u) of preference
and utility profiles satisfying Properties (P1) to (P3) at which f~s attains its worst distortion.

Proof. First by Theorem 1 we know that a worst-case instance with dichotomous utility profile
exists. We can compute the social welfare of the alternatives in that instance and relabel the
alternatives to match the ordering �. That means we have a worst case instance that satisfies
Properties (P1) and (P2).
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We want to prove that there exists an instance that satisfies Property (P3). For the sake of
contradiction assume that such instance does not exist. Consider a worst-case instances (~u, ~σ) that
satisfy Properties (P1) and (P2) but not Property (P3). Among all those instance consider the one
with the minimum number of agents i ∈ N and pairs a � b that ui(a) = ui(b) but a �i b. If such
pair exists in an agent’s ranking then a consecutive pair of alternatives in the ranking with such
condition also exists. So w.l.o.g. assume that ranki(a) = ranki(b) − 1. Let this instance be (~u, ~σ).
We want to create instance (~u′, ~σ′) with (at least) the same distortion with less number of such
pairs.

Define ra := ranki(a) and rb := ranki(b). If we switch the position of a and b in σi to form ~σ′i,
we do not change the social welfares and we have

dist(f~s(~σ
′), ~u′) =

sw(a∗, ~u′)∑
a′∈A

P~s(a′, ~σ′)sw(a′, ~u′)

=
sw(a∗, ~u)∑

a′∈A
P~s(a′, ~σ′)sw(a′, ~u) + (srb − sra)sw(a, ~u) + (sra − srb)sw(b, ~u)

=
sw(a∗, ~u)∑

a′∈A
P~s(a′, ~σ′)sw(a′, ~u) + (sra − srb)(sw(b, ~u)− sw(a, ~u))

> dist(f~s(~σ), ~u).

This has one less “bad” pair since we do not change the ranking of other voters and the ranking of
other alternatives in voter i’s ranking.

C.3 Example Wm, U , and P

(σ1, u1) (σ2, u) (σ3, u3) (σ4, u4) (σ5, u5) (σ6, u6)

σi a1�a2�a3 a2�a1�a3 a2�a3�a1 a3�a1�a2 a3�a2�a1 a2�a3�a1
ui [1, 0, 0]

[
1
2 ,

1
2 , 0

]
[1, 0, 0]

[
1
2 ,

1
2 , 0

]
[1, 0, 0]

[
1
3 ,

1
3 ,

1
3

]
Table 3: The set W3 = {(σ1, u1), . . . , (σ6, u6)} from Lemma 3.

U=

1 1
2 0 1

2 0 1
3

0 1
2 1 0 0 1

3
0 0 0 1

2 1 1
3

 and P =

s1 s2 s3 s2 s3 s3

s2 s1 s1 s3 s2 s1

s3 s3 s2 s1 s1 s2

 .
D Computing the distortion of deterministic PSRs

To find the distortion of a given PSR we take the same route as in Section 4 by identifying some
properties for the worst-case instances.

Lemma 5. For any (deterministic) positional scoring rule f~s and alternatives a∗, a+ there exists
a pair of preference profile ~σ and utility profile ~u ∈ C(~σ) that satisfies the following properties and
has the maximum possible distortion for that rule.

(i) a∗ is the optimal alternative and a+ is the winner.
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(ii) For i ∈ N if a∗ �i a+ then ui = 1ranki(a∗), and ranki(a
+) = ranki(a

∗) + 1 .

(iii) For i ∈ N if a+ �i a∗ then ui = 1m, and ranki(a
+) = 1.

In addition, the number of possible pairs of σ, u that appear in one of such preference and utility
profiles is at most 2(m− 1)!.

Proof. For any worst-case profile the winner and the optimal are different alternatives. Relabel the
alternatives to make a∗ the optimal and a+ the winner. Let (σ, ~u) be such worst-case instance. We
want to build (σ′, ~u′) with the desired properties.

Consider any i ∈ N where a∗ �i a+. The distortion is

sw(a∗, ~u)

sw(a+, ~u)
,

so to maximize the distortion we can set u′i = 1ranki(a∗). After this if we move a+ up to be just
below a∗ we do not increase it’s social welfare, and do not decrease it’s score. That means winner
remains the same and the distortion does not change, and hence we have a worst-case instance with
Property (ii).

Consider any i ∈ N where a+ �i a∗. The distortion is

sw(a∗, ~u)

sw(a+, ~u)
,

so to maximize the distortion we can set u′i = 1m. After this if we move a+ to the top of the
list. By this change we do not increase it’s social welfare, and do not decrease it’s score. That
means winner remains the same and the distortion does not change, and hence we have a worst-case
instance with Property (iii).

Now consider any agent in (σ′, ~u′). There are (m−1)! rankings over A\{a+}. For each of them
either a∗ �i a+, in which case by Property (ii), ui = 1ranki(a∗), and ranki(a

+) = ranki(a
∗) + 1, or

a+ �i a∗ then by Property (iii), ui = 1m, and ranki(a
+) = 1. That means we have at most 2 possible

total ordering, and utility function for each of the (m− 1) partial orderings over A \ {a+}.

Now let Wm = {(σi, ui)} be the set of all possible preferences and utility functions in a worst-
case instance that satisfy the properties of Lemma 5, and define q to be a vector of size w := t, where
qi is in proportion to the fraction of the agents with preference ranking σi, and utility function ui.
We can use the following linear program to find the distortion of this rule.
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m Optimal DPSR Optimal
DPSR
Distortion

Optimal RPSR Optimal
RPSR Dis-
tortion

# Iterations

2 [1, 0] 3 [0.843, 0.157] 1.5 4

3 [1, 0, 0] 5.5 [0.776, 0.189, 0.035] 1.870 6

4 [0.65, 0.26, 0.09, 0.0] 8.333 [0.7247, 0.2025, 0.069, 0.0038] 2.188 7

5 [0.634, 0.22, 0.082, 0.036, 0.028] 11.418 [0.6645, 0.2121, 0.0881, 0.0353, 0.0] 2.474 9

Table 4: Optimal distortion of PSR and RPSR with their corresponding scoring vectors for m up
to 5.

Linear Program P’

max
∑
i∈[w]

qiui(a
∗)

s.t.
∑
i∈[w]

qisranki(a) 6
∑
i∈[w]

qisranki(a+) ∀a ∈ A

∑
i∈[w]

qiui(a) 6
∑
i∈[w]

qiui(a
∗) ∀a ∈ A

∑
i∈[w]

qiui(a
+) = 1

qi > 0 ∀i ∈ [w]

To find the best possible scoring vector we perform a grid search on the space of possible PSRs;
while this search space is very large (in fact continuous), the fact that we only have to solve a linear
program for each candidate point allows us to use a rather fine grid for our search. This technically
only gives us upper bounds, but if there is a better rule, that should be on a point which not on
our grid. Of course, we have not proved that the distortion function is continuous, although all of
our empirical observations seem to suggest that. In that case, we would expect our upper bounds
to be within ε of the distortion of the best possible PSR, where ε would depend on the size of the
grid; we take the grid granularity to be 0.001, so the differences in the distortion between the lower
and upper bounds would be insignificant. It would be interesting to show the continuity of the
distortion objective, but since it is only relevant for this rather complementary part of our main
work, we leave that as a future direction.

We remark that the best possible bounds are achieved by multiple scoring vectors. In fact, for
m = 2, any scoring vector achieves the best distortion of 3. The proven distortion and one of the
scoring vectors that achieve that distortion for up to m = 5 are shown in Table 4.
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E Details for Gradient-Based Search in Section 4.4

To find a lower bound on the distortion of instance optimal rule we run a gradient decent style
search. As defined in Section 4.4, each worst-case instance is identified by q, a unit sum vector of
size t. We start with a random starting point q that represents instance (~σ, ~u) and ε = 0.1. In each
iteration we define the set of all possible next steps as S = ∪i∈[t]{(q1, . . . , qi+ε, . . . , qt), (q1, . . . , qi−
ε, . . . , qt)}. We re-normalize all the vectors in S to make them unit sum and compute their distor-
tions using Linear program P. Then if there exists q′ ∈ S that represents instance (~σ′, ~u′), where
dist(f∗(~σ′), ~u′) > dist(f∗(~σ), ~u) we randomly jump to one of such vectors for the next iteration, and
if non of them has a distortion greater than the distortion of q then we decrease the value of ε and
repeat the procedure. We keep iterating while ε > τε and report the distortion of instance optimal
rule on the final instance as a lower bound on the distortion.

To make sure that we have a better bound we try different random starting points and report
the maximum output.

F Comparing with the quadratic program of [18]

As we mentioned in Section 1.2, Filos-Ratsikas and Miltersen [18] devised a quadratic program for
finding the distortion of a given RPSR, when the utilities of the agents are normalized according
to the unit-range normalization.3 In this normalization, for every agent i ∈ N , we have that
maxa∈A ui(a) = 1, mina∈A ui(a) = 0, and ui(a) ∈ [0, 1] for all a ∈ A.

The quadratic programming formulation of [18] is enabled by a structural characterization of
the worst-case utility profiles, similar in spirit to that of our Theorem 1. In particular, they prove
that the worst-case distortion is attained in what they refer to as “quasi-combinatorial” utility
profiles, i.e., essentially utility profiles where the utility of an agent for any alternative is either 1
or 0. This enables them to restrict the set of possible utility vectors to a set of size (m − 1) ·m!.
Then, in a conceptually similar way to our approach in Section 4.2, they define variables xi for
the fraction of agents that have each of those utility vectors, and use those as variables of their
optimization program. That program has linear constraints and a non-convex quadratic objective
function, but the number of constraints is (m − 1)m!. For m = 3, in the unit-range case, that
amounts to 12 constraints, and Filos-Ratsikas and Miltersen solve their quadratic program using
active set methods, by enumerating over all possible subsets of active constraints.

For their approach to be even conceivably applicable to the unit-sum case, one would need
first to prove a similar structural result for the worst-case utility profiles. Our theorem 1 clearly
provides such a result. Still, for a given m, the number of possible k-dichotomous utility vectors is
in fact m ·m!. While at first glance this might not sound much different from the (m−1)m! used by
Filos-Ratsikas and Miltersen for unit-range, we remark that for m = 3, this increases the number
of variables (and constraints in their quadratic program) from 12 to 18. Solving their quadratic
program with 18 constraints is clearly computationally infeasible, and hence their technique is
inapplicable for unit-sum, even when m = 3.

Our crucial technical contribution here is the refinement of the worst-case characterization by
means of Properties (P2) and (P3). In turns, this allows us to devise a (different) quadratic program

3Filos-Ratsikas and Miltersen [18] only present their program in the context of m = 3, but its definition is valid
for any number of alternatives.
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with much fewer constraints, enabling us to handle up to at least 5 agents in reasonable running
time.
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